The rate of a reaction doubles when its temperature changes from 300 K to 310 K. Activation energy of such a reaction will be (R = 8.314KJmol⁻¹ and log 2=0.301)

(1) 53.6 KJmol⁻¹

(2) 48.6 KJmol-1

(3) 58.5 KJmol-1

(4) 60.5 KJmol-1

Solution:

According to Arrhenius equation, In $k_2/k_1 = -(E_a/2.303R)(1/T_2 - 1/T_1)$ $r_2/r_1 = k_2/k_1 = 2$ Given $T_1 = 300K$ $T_2 = 310 K$ $log(2) = -(E_a/2.303 \times 8.314) [(1/310) - (1/300)]$ $0.301 = -E_a/19.147 [(300-310)/93000]$ $0.301 = -E_a/19.147 [-10/93000]$ $E_a = 0.301 \times 19.147 \times 9300$ = 53598.19 J= 53.6 kJ/mol